On the Martingale Selection Problem and its applications

Matteo Burzoni

based on joint works with M. Šikíc and E. Bayraktar

Robust Techniques in Quantitative Finance Oxford, 3-7 September 2018

Outline

- The martingale selection problem
 - Characterization of the existence of solutions;
- Applications to arbitrage theory
 - Frictionless models;
 - Proportional transaction costs;
 - Illiquidity models.
- Applications to superhedging duality
- Conclusions

THE MARTINGALE SELECTION PROBLEM

The Problem

Let $V:=(V_t)_{t\in\mathcal{I}}$ be a collection of \mathcal{F}_t -measurable random sets, with $\mathcal{I}:=\{0,\ldots,T\}$.

Problem

Find a process $\xi := (\xi_t)_{t \in \mathcal{I}}$ and a probability measure \mathbb{Q} such that:

- $\xi_t \in V_t$ for any $t \in \mathcal{I}$;
- for any $0 \le t \le T 1$,

$$\mathbb{E}[\xi_{t+1} - \xi_t \mid \mathcal{F}_t] = 0 \quad \mathbb{Q} - a.s.$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

M. Burzoni (ETHZ)

The Problem

Let $V:=(V_t)_{t\in\mathcal{I}}$ be a collection of \mathcal{F}_t -measurable random sets, with $\mathcal{I}:=\{0,\ldots,T\}$.

Problem

Find a process $\xi := (\xi_t)_{t \in \mathcal{I}}$ and a probability measure \mathbb{Q} such that:

- Q has finite support;
- $\xi_t \in V_t$ for any $t \in \mathcal{I}$;
- for any $0 \le t \le T 1$,

$$\mathbb{E}[\xi_{t+1} - \xi_t \mid \mathcal{F}_t] = 0 \quad \mathbb{Q} - a.s.$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

M. Burzoni (ETHZ)

MSP and applications

The Problem

Let $V := (V_t)_{t \in \mathcal{I}}$ and $C := (C_t)_{t \in \mathcal{I}}$ be collections of \mathcal{F}_t -measurable random sets, with $\mathcal{I} := \{0, \dots, T\}$.

Problem

Find a process $\xi := (\xi_t)_{t \in \mathcal{I}}$ and a probability measure \mathbb{Q} such that:

- Q has finite support;
- $\xi_t \in V_t$ for any $t \in \mathcal{I}$;
- for any $0 \le t \le T 1$,

$$\mathbb{E}[\xi_{t+1} - \xi_t \mid \mathcal{F}_t] \in C_t^{\circ} \quad \mathbb{Q} - a.s.$$

Here, C_t° denotes the polar set of C_t , i.e.,

$$C_t^{\circ} := \{ y \in \mathbb{R}^d \mid \langle c, y \rangle \leq 0, \ \forall c \in C_t \};$$

◆ロト ◆個 ト ◆ 園 ト ◆ 園 ト ● り へ ○ ○

M. Burzoni (ETHZ)

The program

Aim: Give a geometric characterization for the existence of solutions to the MSP(V, C);

Approach: We follow dynamic programming ideas to identify the subsets of V that can support a martingale process;

Example: One period deterministic Msp: $V_0 = [1,3]$, $V_1 = [2,4]$. The interval [1,2) cannot support any martingale process.

Meta-result: MSP is solvable if and only if a certain collection $(W_t)_{t\in\mathcal{I}}$ with $W_t\subset V_t$ for any $t\in\mathcal{I}$ is non-empty.

The approach

Consider a martingale selection problem (V, C). Recall that we want the martingale property:

$$\mathbb{E}[\xi_{t+1} - \xi_t \mid \mathcal{F}_t] \in C_t^{\circ} \quad \Leftrightarrow \quad \xi_t = \mathbb{E}[\xi_{t+1} \mid \mathcal{F}_t] - \eta_t.$$

with $\eta_t \in C_t^{\circ}$.

M. Burzoni (ETHZ)

The approach

Consider a martingale selection problem (V, C). Recall that we want the martingale property:

$$\mathbb{E}[\xi_{t+1} - \xi_t \mid \mathcal{F}_t] \in C_t^{\circ} \quad \Leftrightarrow \quad \xi_t = \mathbb{E}[\xi_{t+1} \mid \mathcal{F}_t] - \eta_t.$$

with $\eta_t \in C_t^{\circ}$.

Backward construction

- Start with $W_T := V_T$;
- for t = T 1, ..., 0, set

$$W_t := V_t \cap (W_{t+1}^{\sharp} - C_t^{\circ}).$$

where

$$W_{t+1}^{\sharp}(\omega) = \left\{ \mathbb{E}_{\mathbb{Q}}[\xi|\mathcal{F}_t](\omega) \mid \mathbb{Q} \in \mathcal{P}, \ \xi \in W_{t+1} \ \mathbb{Q}$$
-a.s. $\right\}$

◆ロト ◆昼 ▶ ◆ 豊 ト ・ 豊 ・ 夕久 (*)

6 / 24

M. Burzoni (ETHZ) MSP and applications 06/09/2018

The approach

Consider a martingale selection problem (V, C). Recall that we want the martingale property:

$$\mathbb{E}[\xi_{t+1} - \xi_t \mid \mathcal{F}_t] \in C_t^{\circ} \quad \Leftrightarrow \quad \xi_t = \mathbb{E}[\xi_{t+1} \mid \mathcal{F}_t] - \eta_t.$$

with $\eta_t \in C_t^{\circ}$.

Backward construction (B., Šikíc ('18))

- Start with $W_T := V_T$;
- for t = T 1, ..., 0, set

$$W_t := V_t \cap \left(W_{t+1}^{\flat} - C_t^{\circ} \right).$$

where

$$W_{t+1}^{\flat}(\omega) = \left\{ y \in \mathbb{R}^d \mid \forall \bar{\omega} \in \Omega \; \exists \, \mathbb{Q} \in \mathcal{P}(\bar{\omega}), \xi \in W_{t+1} \; \mathbb{Q}\text{-a.s.} \right.$$
$$: \mathbb{E}_{\mathbb{Q}}[\xi | \mathcal{F}_t](\omega) = y \right\}$$

M. Burzoni (ETHZ) MSP and applications 06/09/2018 6 / 24

The main result

The (robust) MSP (V, C) is *solvable* if $\forall \overline{\omega} \in \Omega$ there exist (ξ, \mathbb{Q}) such that

- $\xi_t \in V_t$ for $t \in \mathcal{I}$;
- $\bar{\omega} \in \operatorname{supp} \mathbb{Q}$;
- $\mathbb{E}_Q[\xi_{t+1} \xi_t | \mathcal{F}_t] \in C_t^{\circ}$ Q-a.s., for all $0 \le t \le T 1$,

Theorem (B., Šikíc ('18))

The martingale selection problem (V,C) is solvable if and only if $W_t(\omega) \neq \emptyset$ for all $t \in \mathcal{I}$ and $\omega \in \Omega$.

APPLICATIONS TO NO ARBITRAGE THEORY

We want to obtain a version of the Fundamental Theorem of Asset Pricing in a general framework.

Theorem (Meta-FTAP)

No arbitrage \iff exists a consistent price system.

We want to obtain a version of the Fundamental Theorem of Asset Pricing in a general framework.

Theorem (Meta-FTAP)

No arbitrage \iff exists a consistent price system.

This can be translated into

Theorem (Meta-Theorem)

No arbitrage \iff a suitable MSP (V, C) is solvable.

In particular, the set of consistent price system is given by the set of "martingales" living in V.

FRICTIONLESS MARKETS

Frictionless markets

Model: price process $(S_t)_{t\in\mathcal{I}}$, set of constraints $(C_t)_{t\in\mathcal{I}}$;

NA: $(H \cdot S)_T \ge 0$ with H admissible $\Rightarrow (H \cdot S)_T = 0$;

MSP: $V_t = cone(S_t)$, C_t given.

Frictionless markets

Model: price process $(S_t)_{t \in \mathcal{I}}$, set of constraints $(C_t)_{t \in \mathcal{I}}$;

NA: $(H \cdot S)_T \ge 0$ with H admissible $\Rightarrow (H \cdot S)_T = 0$;

MSP: $V_t = cone(S_t)$, C_t given.

Theorem

NA if and only if for every $\omega \in \Omega$, there exists $\mathbb Q$ such that

- $\omega \in \operatorname{supp} \mathbb{Q}$;
- $E_{\mathbb{Q}}[S_{t+1} S_t | \mathcal{F}_t] \in C_t^{\circ}$, \mathbb{Q} -a.s..

Frictionless markets

Proof: consider the MSP,

$$V_t = \operatorname{cone}(S_t), \quad C_t \text{ given.}$$

We have two cases:

Solvable: martingale measures exist \Rightarrow NA;

Non Solvable: For some $\bar{\omega} \in \Omega$ and $t \in \mathcal{I}$, we have

$$W_t(\bar{\omega}) = V_t \cap (W_{t+1}^{\flat} - C_t^{\circ}) = \varnothing.$$

One can show that a separator of the two sets defines an arbitrage strategy.

PROPORTIONAL TRANSACTION COSTS

The currency market model of Kabanov

Model: solvency cone process $(K_t)_{t\in\mathcal{I}}$, set of constraints $(C_t)_{t\in\mathcal{I}}$;

NA: $h_T \in \mathcal{L}(\mathcal{F}_T; \mathbb{R}^d_+)$ admissible $\Rightarrow h_T = 0$;

MSP: $V_t = ri(K_t^*)$, C_t given. $(K_t^* = -K_t^\circ)$ is the dual cone of K_t)

The currency market model of Kabanov

Model: solvency cone process $(K_t)_{t\in\mathcal{I}}$, set of constraints $(C_t)_{t\in\mathcal{I}}$;

NA:
$$h_T \in \mathcal{L}(\mathcal{F}_T; \mathbb{R}^d_+)$$
 admissible $\Rightarrow h_T = 0$;

MSP: $V_t = ri(K_t^*)$, C_t given. $(K_t^* = -K_t^\circ)$ is the dual cone of K_t)

Theorem

"NA" if and only if for every $\omega \in \Omega$, there exists (ξ,\mathbb{Q}) such that

- $\xi_t \in ri(K_t^*)$ for every $t \in \mathcal{I}$;
- $\omega \in \operatorname{supp} \mathbb{Q}$;
- $E_{\mathbb{Q}}[\xi_{t+1} \xi_t | \mathcal{F}_t] \in C_t^{\circ}$, \mathbb{Q} -a.s..

ILLIQUIDITY MODELS

The illiquidity model of Pennanen '11

Model: cost process $(S_t)_{t \in \mathcal{I}}$, set of constraints $(C_t)_{t \in \mathcal{I}}$;

- ▷ Example: $S_t(\omega, x) = s_t(\omega)\varphi(x)$ where φ is the "cost of illiquidity" (see Çetin and Rogers '07);
- \triangleright Value function: $\mathcal{V}_T(H) = -\sum_{t=0}^T S_t(\omega, H_t H_{t-1})$.

The illiquidity model of Pennanen '11

Model: cost process $(S_t)_{t \in \mathcal{I}}$, set of constraints $(C_t)_{t \in \mathcal{I}}$;

- ▷ Example: $S_t(\omega, x) = s_t(\omega)\varphi(x)$ where φ is the "cost of illiquidity" (see Çetin and Rogers '07);
- \triangleright Value function: $\mathcal{V}_T(H) = -\sum_{t=0}^T S_t(\omega, H_t H_{t-1})$.
- NA: $V_T(H) \ge 0$ with H admissible $\Rightarrow V_T(H) = 0$;
 - ▶ Note that scalability matters!

The illiquidity model of Pennanen

MSP:
$$V_t = \operatorname{ri} \partial S_t^{\infty}(\cdot, 0)$$
, C_t given,

$$S_t^{\infty}(\cdot,x) := \sup_{\alpha>0} \frac{S_t(\cdot,\alpha x)}{\alpha}.$$

Interpretation: worst sublinear model compatible with S.

The illiquidity model of Pennanen

MSP:
$$V_t = \operatorname{ri} \partial S_t^{\infty}(\cdot, 0)$$
, C_t given,

$$S_t^{\infty}(\cdot,x) := \sup_{\alpha>0} \frac{S_t(\cdot,\alpha x)}{\alpha}.$$

Interpretation: worst sublinear model compatible with S.

Theorem

No scalable arbitrage if and only if for every $\omega \in \Omega$, there exists (ξ, \mathbb{Q}) such that

- $\xi_t(\omega) \in \text{ri } \partial S^{\infty}(\omega, 0)$ for every $t \in \mathcal{I}$ and $\omega \in \Omega$;
- $\omega \in \operatorname{supp} \mathbb{Q}$;
- ullet $E_{\mathbb{Q}}[\xi_{t+1}-\xi_t|\mathcal{F}_t]\in C_t^{\circ}, \quad \mathbb{Q}$ -a.s..

SUPERHEDGING DUALITY

The randomization approach

The idea: Model the transaction costs as an extra state variable (see Bouchard, Deng, Tan, *Math. Fin.*, '18).

Define the frictionless process

$$\hat{S}_t(\omega,\theta) = \Pi_{K_t^*}([S_t^1(\omega)\theta^1,\ldots,S_t^d(\omega)\theta^d]$$

for a Borel-measurable selector S_t of K_t^* ;

- Show that the primal problems coincides for the original and the extended market;
- Show the same for the dual;
- Use frictionless results for showing the duality.

The randomization approach

The assumptions of Bouchard et al.:

- \bullet \mathcal{P} -q.s. framework of Bouchard and Nutz;
- Uniform bound on transaction costs;
- No Arbitrage of the second kind:

$$\xi \in K_{t+1} \mathcal{P} ext{-q.s.} \quad \Rightarrow \quad \xi \in K_t \mathcal{P} ext{-q.s.}$$

equivalently: every process taking values in $(K_t^*)_{t\in\mathcal{I}}$ can be extended as a martingale.

Our contribution

Denote by \mathcal{S}^0 the class of strictly consistent price systems. Moreover,

$$\pi_{\mathcal{K}}(\mathit{G}) := \inf \big\{ y \in \mathbb{R} \mid \exists \mathit{H} \text{ adm. s.t. } y \mathbf{1}_{\mathit{d}} + \mathit{H}_{\mathit{T}} - \mathit{G} \in \mathit{K}_{\mathit{T}}, \quad \mathcal{P}\text{-q.s.} \big\}.$$

Theorem (Bayraktar, B. ('18+))

Assume "NA" for (K, P). For any Borel-measurable random vector G,

$$\pi_{\mathcal{K}}(G) = \sup_{(Z,\mathbb{Q}) \in \mathcal{S}^0} \mathbb{E}^{\mathbb{Q}}[G \cdot Z_T].$$

Moreover, the superhedging price is attained when $\pi_K(G) < \infty$.

Our contribution

Main difficulty: The collection of sets

$$ilde{K}_t^* := K_t^* \cap K_{t+1}^\sharp$$

is not Borel measurable so one cannot replicate the construction of Bouchard et al.;

The idea: Choose an appropriate family of priors $\hat{\mathcal{P}}$ such that

$$\hat{P}\left(\hat{S}_{t}\in\operatorname{int}\left(\tilde{K}_{t}^{*}\right),\;\forall t\in\mathcal{I}\right)=1,\;\forall\;\hat{P}\in\hat{\mathcal{P}};$$

Generalization: A duality result can be derived for the case of portfolio constraints (with S^0 suitably replaced).

CONCLUSIONS

Conclusions

- We have considered a martingale selection problem in absence of a reference probability and characterize existence of solutions;
- We provided a FTAP for various market models, from frictionless to general illiquidity frameworks;
- We showed how one can derive the superhedging duality, via randomization, through the solutions of the MSP.

Conclusions

- We have considered a martingale selection problem in absence of a reference probability and characterize existence of solutions;
- We provided a FTAP for various market models, from frictionless to general illiquidity frameworks;
- We showed how one can derive the superhedging duality, via randomization, through the solutions of the Msp.

Thank you for your kind attention.